Improving GDP measurement: A measurement-error perspective
نویسندگان
چکیده
منابع مشابه
GDP Revisions: Measurement and Implications
Gauging economic conditions in real time is challenging, in part because economic data are difficult to measure and subject to subsequent revision as more information becomes available. This article investigates the pattern and size of revisions to real gross domestic product (GDP) over the past decade or so. Revisions to early estimates of GDP can be large and, over the past 15 years, have ten...
متن کاملEstimating the slope in measurement error models—a different perspective
Motivated by a statistical model for the structural line segment relationship developed for computer vision applications we derive an estimator for the slope of a regression line in univariate measurement error models. We show that under the typical side conditions, this estimator coincides, in most cases, with the maximum likelihood estimator for the normal structural model. Its large sample p...
متن کاملA Measurement Theory Perspective
The metrics suite for object-oriented design put forward by Chidamber and Kemerer [8] is partly evaluated by applying principles of measurement theory. Using the object coupling measure (CBO) as an example, it is shown that failing to establish a sound empirical relation system can lead to deficiencies of software metrics. Similarly, for the object-oriented cohesion measure (LCOM) it is pointed...
متن کاملTESTING FOR AUTOCORRELATION IN UNEQUALLY REPLICATED FUNCTIONAL MEASUREMENT ERROR MODELS
In the ordinary linear models, regressing the residuals against lagged values has been suggested as an approach to test the hypothesis of zero autocorrelation among residuals. In this paper we extend these results to the both equally and unequally replicated functionally measurement error models. We consider the equally and unequally replicated cases separately, because in the first case the re...
متن کاملAn application of Measurement error evaluation using latent class analysis
Latent class analysis (LCA) is a method of evaluating non sampling errors, especially measurement error in categorical data. Biemer (2011) introduced four latent class modeling approaches: probability model parameterization, log linear model, modified path model, and graphical model using path diagrams. These models are interchangeable. Latent class probability models express l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Econometrics
سال: 2016
ISSN: 0304-4076
DOI: 10.1016/j.jeconom.2015.12.009